Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 140(4): 423-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23959168

RESUMO

Catalase and ABCD3 are frequently used as markers for the localization of peroxisomes in morphological experiments. Their abundance, however, is highly dependent on metabolic demands, reducing the validity of analyses of peroxisomal abundance and distribution based solely on these proteins. We therefore attempted to find a protein which can be used as an optimal marker for peroxisomes in a variety of species, tissues, cell types and also experimental designs, independently of peroxisomal metabolism. We found that the biogenesis protein peroxin 14 (PEX14) is present in comparable amounts in the membranes of every peroxisome and is optimally suited for immunoblotting, immunohistochemistry, immunofluorescence, and immunoelectron microscopy. Using antibodies against PEX14, we could visualize peroxisomes with almost undetectable catalase content in various mammalian tissue sections (submandibular and adrenal gland, kidney, testis, ovary, brain, and pancreas from mouse, cat, baboon, and human) and cell cultures (primary cells and cell lines). Peroxisome labeling with catalase often showed a similar tissue distribution to the mitochondrial enzyme mitochondrial superoxide dismutase (both responsible for the degradation of reactive oxygen species), whereas ABCD3 exhibited a distinct labeling only in cells involved in lipid metabolism. We increased the sensitivity of our methods by using QuantumDots™, which have higher emission yields compared to classic fluorochromes and are unsusceptible to photobleaching, thereby allowing more exact quantification without artificial mistakes due to heterogeneity of individual peroxisomes. We conclude that PEX14 is indeed the best marker for labeling of peroxisomes in a variety of tissues and cell types in a consistent fashion for comparative morphometry.


Assuntos
Proteínas de Membrana/análise , Peroxissomos/química , Peroxissomos/metabolismo , Proteínas Repressoras/análise , Glândulas Suprarrenais/química , Glândulas Suprarrenais/citologia , Animais , Biomarcadores/análise , Encéfalo/citologia , Gatos , Células Cultivadas , Feminino , Humanos , Rim/química , Rim/citologia , Masculino , Camundongos , Ovário/química , Ovário/citologia , Pâncreas/química , Pâncreas/citologia , Papio , Ratos , Testículo/química , Testículo/citologia
2.
Histochem Cell Biol ; 140(4): 443-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23982811

RESUMO

Patients with mild forms of peroxisomal biogenesis disorders show facial dysmorphism and exhibit dentition problems accompanied by enamel hypoplasia. However, no information is available on the role of peroxisomes in dental and paradontal tissues. Therefore, we studied the distribution of these organelles, their protein composition and the expression of corresponding genes during dental development and in mature decalcified teeth in mice. Perfusion-fixed heads of mice of different developmental stages (E13.5 to adult) were cut in sagittal direction into two halves and embedded in paraffin for serial sectioning and subsequent peroxidase-based immunohistochemistry or double-immunofluorescence preparations. Frozen, unfixed heads of newborn mice were used for cryosectioning and subsequent laser-assisted microdissection of ameloblasts and odontoblasts, RNA isolation and RT-PCR analysis. Our results revealed the presence of peroxisomes already in the bud stage of dental development. An increase in peroxisome abundance was noted during differentiation of ameloblasts and odontoblasts with the highest number of organelles in Tomes' processes of mature ameloblasts. A strong heterogeneity of peroxisomal enzyme content developed within differentiated dental cell types. A drastic down-regulation of catalase in maturing ameloblasts was noted in contrast to high levels of lipid metabolizing enzymes in peroxisomes of these cells. As known from the literature, differentiated ameloblasts are more prone to oxidative damage which could be explained by the low catalase levels inside of this cell type.


Assuntos
Peroxissomos/metabolismo , Dente/citologia , Ameloblastos/citologia , Ameloblastos/enzimologia , Animais , Catalase/metabolismo , Diferenciação Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odontoblastos/citologia , Odontoblastos/enzimologia , Peroxissomos/enzimologia , Dente/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...